在教学设计案例中,“举案”列举策略如何帮助学生系统化梳理解题思路?
在教学设计案例中,“举案”列举策略如何帮助学生系统化梳理解题思路?我们可曾想过,孩子在面对一道稍复杂的题时,脑袋像团乱麻,不知从哪牵出线头来?“举案”就像递给他一根理顺毛线的竹针,把散落的点串成看得清的路,让思路不再是东一榔头西一棒子,而是能一步步踩稳走顺——这问题,藏着让学习变“透亮”的门道呢。
先说说孩子做题常碰的“堵”:思路像没理的线团
不少学生拿到题先慌:题目里的条件像撒了一地的豆子,捡起这个忘了那个;想套以前的方法,又摸不着边;好不容易写出两步,回头看发现根本接不上后头的逻辑。比如做数学应用题,有人盯着“一共”“剩下”就乱加乱减,却没先理清楚“谁和谁有关系”;做语文阅读理解,抓着某个词就答,没把“上下文怎么勾着说的”串起来。这时候,“举案”列举不是扔给一堆例子让学生抄,是把“同类题的好思路”摆出来,像给人看“别人是怎么把线团理成辫子的”,学生盯着这些“现成的理顺过程”,慢慢就能摸出自己的“理线法”。
举案不是堆例子,是挑“有脉络的样儿”给学生看
很多人误以为“举案”就是多找几道题摆一起,其实得挑“带着思路脚印”的案例——就像教人包粽子,不是拿十个包好的粽子说“你看”,是拿“泡米→折叶→填米→捆绳”每一步都拍了照的“过程粽”,让学生看清“手是怎么动的”。
- 选案例要贴学生的“最近发展区”:比如教小学三年级学生梳理数线段的思路,别直接拿初中几何的复杂线段题当案例,选“数一条线上5个点有几条线段”这种他们刚能碰到的——案例太简单没启发,太难会吓退,刚好“跳一跳够得着”的,学生才愿意跟着琢磨。
- 案例要“露思路的缝儿”:别只给“题目+答案”,要把解题人当时想的“小纠结”“小转弯”写出来。比如数学题“小明有10颗糖,给了小红3颗,又买了5颗,现在有几颗?”,案例里可以写:“一开始我想直接加10+5,后来瞅见‘给了小红3颗’,哦对,得先减再买才对——原来要按‘事情发生的顺序’来理条件!”学生一看“哦,原来他也会犯我刚才的错,后来这么转过来的”,就会把自己的思路和案例连起来。
用“列步骤+标关联”让案例变成“思路地图”
举了案,还得帮学生把案例里的思路“拆成能走的步”,不然案例还是“别人的故事”,变不成自己的本事。就像看别人画地图,得标清“路口往哪拐”“两个点在哪连直线”,自己走才不会迷路。
- 把思路拆成“一步一步的小台阶”:比如解“鸡兔同笼”题,案例可以按“先假设全是鸡→算脚数和实际的差→换兔子进去补脚数→算出兔子数”列四步,每步旁边写“这一步为啥要做”——比如“假设全是鸡”是为了“先把数量框死,好找差距”,学生跟着走台阶,就不会跳过关键步。
- 用箭头或圈点标“条件跟思路的关系”:比如在案例里把“鸡和兔一共有8只”(条件)圈成红圈,箭头指到“假设全是鸡时,算脚数是8×2=16”(第一步);再把“实际脚数是26”(条件)圈成蓝圈,箭头指到“26-16=10(差)”(第二步)——学生一眼就看清“哪个条件喂给了哪步思路”,不会把条件和步骤搞混。
跟着案例“练迁移”,让思路从“别人的”变“自己的”
举案、列步骤只是“看明白”,真要让思路“长在学生脑子里”,得让他们拿着案例的“样子”,去套自己的题——就像学了包三角粽,得试着包四角粽,才知道“哪里要收得更紧”。
- 先做“仿步走”:照案例的步骤套类似题:比如学完“数线段”的案例(按“从左到右标点→依次加点数”),让学生做“数一条直线上7个点有几条线段”的题,要求“每步都对照案例写‘我这步对应案例的哪一步’”——刚开始可能慢,但写着写着就发现“哦,不管几个点,都是从左开始一个个加”。
- 再做“变着走”:改改案例的条件试试:比如案例是“小明买水果(苹果5元一斤,梨3元一斤,共花22元,买4斤,问各买几斤)”,可以改成“小红买文具(铅笔2元一支,笔记本5元一本,共花31元,买7件,问各买几件)”——让学生用案例里的“假设全是铅笔→算钱差→换笔记本”的思路解,做完问:“这次改了‘东西’和‘钱数’,但思路哪步没变?”学生就会摸到“不管买啥,只要是两个量的混合问题,都能用‘假设法’搭架子”。
几个常问的“小疙瘩”,咱们掰扯清楚
Q1:举案是不是越多越好?
A:不是。多了反而乱——就像桌上摆10张路线图,不如留3张“覆盖不同岔路”的清楚。一般同一类题选3-5个“各有侧重”的案例就行:比如一个讲“按顺序理条件”,一个讲“抓关键矛盾”,一个讲“试错调整”,学生能看出“思路有不同的切入口”。
Q2:基础弱的学生,举案会不会听不懂?
A:得“降维举案”——比如教基础弱的孩子梳理数序题,别举“跨了好几个数的数列”,举“1、2、3、4里有几个比2大的数”,案例里把“先看每个数→再和2比→数符合条件的个数”写成大白话,甚至配个小漫画(比如画个数字小人举着“比2大”的牌子),孩子看着不费劲,才会跟着学。
Q3:举案和自己做题,怎么平衡才不会“光看不动脑”?
A:记住“看1个案例,练2道题”——先看案例理一遍思路,再用案例的思路做第一题(仿做),最后做第二题(稍微变个条件)。比如看“鸡兔同笼”案例,先做“鸡兔共10只,脚28只”,再做“三轮车和自行车共15辆,轮40个”,练的时候逼自己写“我这步对应案例的哪句话”,慢慢就会“不用看案例也能摸思路”。
举案前后,学生思路的变化像“从雾里走到亮处”
咱们拿“小学数学应用题”举个实在的例子,看举案前后学生的差别:
| 对比项 | 举案前 | 举案后 |
|--------|--------|--------|
| 读题后的反应 | 盯着数字发呆,说“不知道要先算啥” | 拿笔圈条件,说“先找‘谁先谁后’” |
| 解题步骤 | 东写一步西写一步,比如“10-3=7,7+5=12”(没说清为啥) | 按“给糖→买糖→现在”的顺序写,每步旁注“因为先给出去,所以减” |
| 错了之后的反应 | 说“我算错了”,翻篇 | 回头看案例里的“脚数差”步骤,说“哦,我刚才漏了‘给糖’要先减” |
还有语文阅读理解,比如问“‘忽然’这个词写出了什么”,举案前学生答“写出了快”,举案后他们会写:“案例里说‘忽然’前面写‘风平浪静’,后面写‘乌云来了’,所以这个词是‘把天气变化的快劲儿勾出来’——我也看看上下文有没有这样的反差”,思路就从“抓一个词”变成“连上下文的关系”了。
其实啊,“举案”列举策略最妙的地方,是把“看不见的思路”变成了“能摸得着的样子”——就像教孩子系鞋带,不是光说“交叉绕圈”,是拿自己的鞋带一步步演示“拇指压这里,食指勾那里”,孩子看着看着就会了。学生在案例里看见“原来别人也这么想过”“原来步骤能拆成这样”“原来换个题也能用”,慢慢就会把“别人的思路”拆成“自己的零件”,拼出属于自己的“解题梯子”。咱们做教学的,别着急让学生“赶紧做对题”,先帮他们“看清思路的样子”——等他们摸熟了理线的竹针,再乱的题,也能一步步捋顺了。
【分析完毕】
在教学设计案例中,“举案”列举策略如何像递竹针般帮学生理清乱麻般的解题思路?
课堂上常碰到这样的场景:五年级学生小宇做“行程问题”题,盯着“甲每小时走5千米,乙每小时走4千米,两人同时从两地出发相向而行,走了2小时相遇,求两地距离”的题干,笔杆咬得发白,最后写出“5+4=9”就没下文了——问他“9是啥意思”,他挠头说“不知道,就觉得要加起来”;隔壁班女生小棠做语文阅读题,问“‘月光浸着石阶’的‘浸’字好在哪,她写‘写出了月光很亮’,被老师打回,理由是“没说清‘浸’怎么勾出亮的感觉”。这些孩子的困惑,本质上是解题思路像没理的毛线团:要么抓不住条件的“线头”,要么理不清步骤的“走向”,越急越乱。
这时候,“举案”列举策略就像递过来一把“理毛线的竹针”——不是扔给学生一堆题说“你照着做”,是把“别人理毛线的过程”摊开在他们眼前:比如拿三道“行程问题”案例,分别展示“先找‘相向’的方向→算两人速度和→乘时间”“先算甲走的路→再算乙走的路→加起来”“用线段图标两地距离,把两人的路叠在一起”,学生盯着这些“带着思路脚印”的案例,慢慢就能看出“哦,原来条件是按‘方向→速度→时间’串起来的”“原来步骤能拆成‘先算各自的,再加起来’”。
举案要选“带着思路汗味”的案例,别选“完美无缺的标本”
很多老师举案爱选“标准答案式的题”,比如“小明买3支笔花6元,买5支要多少钱”,答案是“2×5=10”,但这样的案例像“橱窗里的假花”,学生看了只会记“单价=总价÷数量”,却不知道“如果题目没给‘单价’咋办”。真正有用的案例,得带点“解题人的小纠结”——就像教小宇“行程问题”时,选这样一个案例:
题目:爸爸开车从家到公司,每小时60千米,走了半小时发现忘带文件,掉头回家拿(速度不变),再去公司,结果迟到10分钟。求家到公司的距离?
解题时的小笔记:“一开始我想直接算60×0.5=30千米,后来发现‘掉头回家’要多走一段——哦,原来要算‘往返的额外路程’!先算掉头回家用了多久(还是半小时),再从公司出发时已经晚了1小时,加上迟到的10分钟,总共多花了70分钟?不对,等一下,迟到的是‘比平时去公司的时间’多10分钟,平时去公司是‘距离÷60’,今天用了‘0.5(去)+0.5(回)+距离÷60 + 10分钟’,这样列方程才对!”
小宇看到这个案例,眼睛一下子亮了:“原来他也会算错!后来这么绕过来的——我刚才做相遇问题时,是不是也漏了‘相向而行要加速度和’这个点?”带“汗味”的案例,会让学生觉得“思路不是天生的,是试出来的”,反而敢跟着琢磨自己的错题。
把案例拆成“能踩脚的台阶”,别让学生“望着案例发呆”
举了“带汗味”的案例,还得帮学生把“思路的楼梯”画清楚——就像教老人爬楼梯,得标清“第一步扶扶手,第二步抬左脚”,不然老人看着楼梯腿软。比如教小棠“字词赏析”题,选案例时可以拆成这样的“台阶”:
- 台阶1:抓“字的本来意思”——“浸”的本义是“泡在液体里”,比如“浸泡衣服”;
- 台阶2:想“字放在句子里的意思”——“月光浸着石阶”,是说“月光像水一样裹着石阶”;
- 台阶3:联“句子的 context(上下文)”——前文写“夜很静,连虫鸣都轻了”,后文写“石阶泛着柔白的光”,所以“浸”字把“月光的柔、静、满”都写出来了;
- 台阶4:说“作者为啥用这个字”——比“照”更软,比“铺”更有“裹着”的温度,让读者像摸得到月光似的。
小棠跟着走台阶,再做“‘春风拂过麦田’的‘拂’字好在哪”,就会先想“‘拂’是轻轻擦过”,再想“春风像手轻轻摸麦田”,再联“麦田绿得晃眼”的上下文,最后说“写出了春风的软和麦田的活”——台阶踩实了,思路就不会“飘”。
用“案例当镜子”,照出自己思路的“断档处”
举案、拆台阶之后,最关键的是让学生拿案例当“镜子”,照自己的错题——就像穿衣服时对着镜子扯扯衣角,才知道哪里没拉平整。比如小宇做了“甲乙两车从相距300千米的两地同时出发,甲车每小时走60千米,乙车每小时走40千米,几小时后相遇”的题,错了三次:第一次写“300÷60=5”,第二次写“300÷40=7.5”,第三次写“60+40=100”就停了。这时候拿出之前的“行程问题”案例,让他把错题和案例并排写:
| 我的错题步骤 | 案例里的对应步骤 | 我漏了啥? |
|--------------|------------------|------------|
| 300÷60=5 | 先找“相向而行”→算速度和(60+40) | 没抓“相向”的方向,直接用了甲车的速度 |
| 60+40=100 | 速度和×时间=总距离→反过来总距离÷速度和=时间 | 知道加速度和,但没想起“除法是乘法的逆运算” |
小宇盯着表格,突然拍桌子:“哦!我把‘相向而行要加速度和’这个点忘死了!案例里反复说‘方向决定算法’,我刚才光顾着算数字,没看‘相向’俩字!”案例当镜子,能让学生看见自己思路的“断档”——不是“笨”,是“没注意到某个小细节”,补上这个细节,思路就通了。
从“看案例”到“用案例”,得让学生“动手拆自己的题”
举案不是“看完就完了”,得像学骑自行车——看了别人骑,得自己跨上去蹬两圈。比如教“鸡兔同笼”题,案例展示了“假设全是鸡→算脚差→换兔子”的思路,接下来要让学生“拆自己的错题”:
- 第一步:给错题贴“案例标签”——比如学生做了“鸡兔共12只,脚32只”,错写成“12×2=24,32-24=8,8÷4=2(鸡)”,就给这道题贴案例里的标签:“假设全是鸡→算脚差→换兔子”,然后标“我错在‘换兔子时除以4’——应该是‘每只兔子比鸡多2只脚,所以脚差÷2=兔子数’”;
- 第二步:给错题“加案例零件”——在错题旁边写“案例里说‘脚差是兔子比鸡多的总脚数,所以要除以单只的差’”,再画个小图:鸡画2只脚,兔子画4只脚,用箭头标“8只脚差=4只兔子×2只脚/只”;
- 第三步:用案例思路“改错题”——重新算:“12×2=24(全鸡的脚),32-24=8(脚差),8÷(4-2)=4(兔子),12-4=8(鸡)”,写完说“这次我用案例里的‘单只脚差’代替了‘直接除以4’,对了!”
动手拆的过程,是把“案例的思路”变成“自己的工具”——就像把别人的螺丝刀拆开看构造,再装到自己工具箱里,下次遇到“拧螺丝”的问题,自然会拿起来用。
聊聊大家常犯的“举案小错”,咱们纠过来
Q:举案是不是得选“难题”才有挑战性?
A:恰恰相反,难题容易让学生“望而却步”。比如教三年级“归一问题”(“3支笔6元,5支多少钱”),别举“买5种文具的混合题”,选“2支铅笔4元,7支多少钱”这种“只变数量不变类型”的题——案例的难度要“贴着学生的现有水平”,让他们觉得“我也能做出案例里的题”,才会有信心学思路。
Q:学生看完案例还是不会,是不是案例没选对?
A:可能是没让学生“说出来”思路。比如看完“行程问题”案例,别直接让学生做题,先让他们“复述”:“案例里的人先干了啥?为啥干这个?后来发现啥问题?怎么改的?”——说出来,等于把“别人的思路”用自己的话“翻译”了一遍,脑子才会“刻”下痕迹。小宇之前看完案例没说,后来老师逼他复述“掉头回家要多走一段”,他才突然懂“我刚才漏了‘往返’”。
Q:举案要不要用“不同学科的案例”?
A:可以用,但得“跨得有道理”。比如教“逻辑推理”题(语文里的“谁是凶手”阅读题),可以举数学里“找规律”的案例:“数学里找‘1,3,5,7’的规律是‘每次加2’,语文里找‘说话的人是张三’的规律是‘只有张三说“我没做”,但现场有他的指纹’——都是‘抓矛盾点’”。跨学科的案例能让学生发现“思路是通的”,比如“抓矛盾”不管是数学还是语文,都是“找不符合常理的地方”,这样思路就更“活”了。
其实咱们做教学的,都盼着学生“会做题”,但“会做题”的根是“会理思路”。“举案”列举策略最暖的地方,是把“抽象的思路”变成了“看得见、摸得着的故事”——就像妈妈教孩子织毛衣,不是光说“绕线、挑针”,是拿着自己的毛衣针,一步步演示“线要从针眼里穿过去,挑第二针时手指要压这里”,孩子看着看着就会了。学生在案例里看见“原来思路是试出来的”“原来步骤能拆成台阶”“原来我漏的是这个小细节”,慢慢就会把“别人的理线法”变成“自己的”——等他们再遇到乱麻般的题,不会再慌,会笑着说“我先找个案例看看,别人是咋理的”。
教学不是“灌知识”,是“递工具”——递一把能理清思路的竹针,递一张能照见断档的镜子,递一组能踩脚的台阶,学生拿着这些工具,慢慢就会把自己变成“理线高手”。这大概就是“举案”列举策略最动人的地方吧:它不只是教“怎么解题”,更是教“怎么学会自己找解题的路”。

蜂蜜柚子茶